Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Shien-Kuei Liaw

Shien-Kuei Liaw

National Taiwan University of Science and Technology, Taiwan

Title: WDM bidirectional optical wireless communications

Biography

Biography: Shien-Kuei Liaw

Abstract

In this talk, high-speed free space optics communication (FSO) technologies will be reviewed and introduced. Then we will design and demonstrate two proposed FSO schemes. The first scheme is bi-directional short-range free-space optical (FSO) communication with 2x4x10 Gb/s capacity in wavelength division multiplexing (WDM) channels short transmission distance. The single-mode-fiber components are used in the optical terminals for both optical transmitting and receiving functions. The measured power penalties for bi-directional, four-channel WDM FSO communication are less than 0.8 dB and 0.2 dB, compared with the back-to-back link and uni-directional transmission system, respectively. The second scheme is hybrid optical fiber and FSO link in outdoor environments such as cross bridge or inter-building system. A sensor head is used for monitoring the condition of bridge, and in the case of the bridge being damaged the transmission path could be changed from fiber link to FSO link to ensure data link connectivity. In both cases, the single-mode-fiber (SMF) components are used in the optical terminals for both optical transmitting and receiving functions. The influences of environmental factor including window glasses, air turbulence and rainfall will also be addressed. The colorless and colored window glasses introduce losses under various incident angles, but did not induce substantial power penalties. The air turbulence induces extra transmission loss and instability in the received power. Raindrops are the most influential environmental factor. The bit error rate (BER) test shows that raindrops result in a seriously impaired BER to interrupt the transmission instantaneously. After appropriate performance improvement, these proposed transmission structures show potential applications for outdoor transmission under various natural weather conditions.