Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Shu-Chun Chu

Shu-Chun Chu

National Cheng Kung University, Taiwan

Title: Generation of Mathieu-Gauss beams with an intra-cavity spatial light modulator

Biography

Biography: Shu-Chun Chu

Abstract

Helmholtz–Gauss beams (HGBs), nearly non-diffraction beams that can propagate a long distance without significant divergence, have attracted considerable attention for their potential applications in science and technology. Mathieu-Gauss beams (MGBs) are one kind of Helmholtz–Gauss beams, which are the ideal non-diffraction Mathieu beams apodized by Gaussian transmittance. Unlike the ideal non-diffracting Mathieu beams, MGBs can be realized experimentally for the reason that MGBs carry a reasonable finite power. The nearly non-diffraction properties of MGM show their potential to lots of practical applications, such as: optical interconnections, laser machining, collimation and measurement, optical manipulation, etc. Alvarez-Elizondo et al. first generated MGBs in an axicon-based stable resonator in a real CO2 laser by slightly breaking the symmetry of the cavity in 2008. Later, Tokunaga et al., adopted special micro-grain Nd:YAG laser crystals, they also achieved spontaneous MGMs oscillation in end-pumped solid-state lasers. A general approach for the selectively excitation of any specified MGM in a laser system is necessary for the development of future MGBs’ applications. This study investigated in finding a way to selectively excite any specified MGM in an end-pumped solid-state laser system with an intra-cavity spatial light modulator. We drafted codes to simulate the lasing operation of the laser system to explore the selectively exciting a specified MGM in end-pumped solid-state lasers using numerical simulation. This study proposed a systematic approach to the selective excitations of all Mathieu-Gauss modes (MGMs) in end-pumped solid-state lasers with a SLM-based stable laser resonator.

Figure 1: It shows propagation of amplitude profile along plane (x, z) or plane (y, z) of an even MGB from the simulated laser resonator with mode order m=2 and ellipticity parameter q=5.

Recent Publications

1.K F Tsai and S C Chu (2016) Characteristic matrix operation for finding global solution of one-time ray-tracing optimization method. Opt. Express 24(19): 21340-21352.

2. S C Chu, H L Yang, Y H Liao, H Y Wu, and C Wang (2014) One-time ray-tracing optimization method and its application to the design of an illuminator for a tube photo-bioreactor. Opt. Express 22(5): 5357-5374.

3.C F Kuo and S C Chu (2013) Numerical study of the properties of optical vortex array laser tweezers. Opt. Express 21(22): 26418-26431.

4.H Y Wu and S C Chu (2013) Ray-leakage-free sawtooth-shaped planar lightguide solar concentrators. Opt. Express 21(17): 20073-20089.

5.K Otsuka and S C Chu (2013) Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping. Opt. Lett. 38: 1434-1436.